Exchange protein directly activated by cAMP (EPAC) promotes transcriptional activation of the decidual prolactin gene via CCAAT/enhancer-binding protein in human endometrial stromal cells

Author:

Kusama Kazuya,Tamura Kazuhiro,Bai Hanako,Sakurai Toshihiro,Nishi Hirotaka,Isaka Keiichi,Imakawa Kazuhiko,Yoshie Mikihiro

Abstract

Protein kinase A (PKA) signalling accompanies elevated intracellular cAMP levels during endometrial stromal cell (ESC) decidualisation. Exchange protein directly activated by cAMP (EPAC), an alternate mediator of cAMP signalling, promotes PKA analogue-induced decidualisation; however, the precise mechanism by which EPAC and PKA co-operatively stimulate decidualisation has not been characterised. To examine the role of CCAAT/enhancer-binding protein (C/EBP) in EPAC- and PKA-mediated decidualisation of primary human ESCs, a reporter plasmid containing the 332 bp region upstream from the transcription initiation site of the decidual prolactin (dPRL) gene was generated and the promoter activity was evaluated using a luciferase assay. The dPRL promoter activity was increased by treatment of transfected ESCs with the PKA-selective cAMP analogue N6-phenyl-cAMP (Phe) and enhanced further by co-treatment with the EPAC-selective cAMP analogue 8-(4-chlorophenyltio)-2′-O-methyl cAMP (CPT). Treatment with forskolin, an adenylyl cyclase activator, had a similar effect on reporter activity. Site-directed mutagenesis of the C/EBPβ- and/or C/EBPδ-binding site in the dPRL promoter abolished Phe/CPT-mediated elevation of the reporter activity. EPAC2 knockdown markedly reduced Phe-stimulated C/EBPβ and C/EBPδ mRNA levels, as well as forkhead box O1 (FOXO1) protein levels. These results suggest that EPAC signalling enhances PKA-mediated dPRL expression in ESCs by acting on C/EBP response elements in the promoter region of the gene.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3