Mechanical properties of soybean plants under various plant densities

Author:

Xu YaoORCID,Zhang Rui,Hou Zhaofang,Yan Chao,Xia Xuan,Ma Chunmei,Dong Shoukun,Gong Zhenping

Abstract

Lodging can reduce grain yield and quality, especially in crops planted at high densities. Force analysis, which relates stem mechanical properties and morphological characteristics under high densities, was used to study lodging in soybean (Glycine max (L.) Merr.). We applied mechanical lodging and examined the relationships between stem bending moment of the breaking force and morphological characteristics in two soybean varieties of contrasting heights grown at four crop population densities (200000, 300000, 400000 and 500000 plants ha–1). The experiment was performed in a split-plot design during 2015–16. Measurements were made during the R1–R8 growth stages. Results showed that the full seed stage was the most sensitive period for lodging. Stem strength of the soybean plants increased with growth and development; however, during the R5–R6 stages, the weakened degree of stem strength was greater than the gravity moment. This was the primary reason for the soybeans tending to lodge during this period. In addition, increasing the planting density weakened the mechanical properties significantly. During breeding efforts to improve the soybean lodging resistance, more attention should be paid to strengthening soybean stems. This study also showed that the ratio of stem diameter to plant height could be a new quantitative index for evaluating the lodging resistance of soybeans.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3