Challenges and opportunities for grain farming on sandy soils of semi-arid south and south-eastern Australia

Author:

Unkovich MurrayORCID,McBeath Therese,Llewellyn Rick,Hall James,Gupta Vadakattu VSR,Macdonald Lynne M

Abstract

Sandy soils make up a substantial fraction of cropping land in low rainfall (<450 mm p.a.) south and south-eastern Australia. In this paper we review the possible soil constraints to increased production on these soils in this region. Many of these soils have a very low (<3%) clay content and suffer from severe water repellency, making crop establishment and weed control problematic. Crops which do emerge are faced with uneven soil wetting and poor access to nutrients, with crop nutrition constraints exacerbated by low fertility (soil organic matter < 1%) and low cation exchange capacity. Zones of high penetration resistance appear common and have multiple causes (natural settling, cementation and traffic induced) which restrict root growth to <40 cm. Crop water use and grain yield are therefore likely to be well below the water-limited potential. Water repellency is readily diagnosed and where apparent should be the primary management target. Repellency can be mitigated through the use of furrow and other sowing technologies, along with soil wetting agents. These techniques appear to be affected by site and soil nuances and need to be refined for local soils and conditions. Once crop establishment on water repellent soils has been optimised, attention could be turned to opportunities for improving crop rooting depth through the use of deep tillage or deep ripping techniques. The required ripping depth, and how long the effects may last, are unclear and need further research, as do the most effective and efficient machinery requirements to achieve sustained deeper root growth. Crop nutrition matched to the water-limited crop yield potential is the third pillar of crop production that needs to be addressed. Low soil organic matter, low cation exchange capacity, low biological activity and limited nutrient cycling perhaps make this a greater challenge than in higher rainfall regions with finer textured soils. Interactions between nutrients in soils and fertilisers are likely to occur and make nutrient management more difficult. While amelioration (elimination) of water repellency is possible through the addition of clay to the soil surface, the opportunities for this may be restricted to the ~30% of the sandy soils of the region where clay is readily at hand. The amounts of clay required to eliminate repellency (~5%) are insufficient to significantly improve soil fertility or soil water holding capacity. More revolutionary soil amelioration treatments, involving additions and incorporation of clay and organic matter to soils offer the possibility of a more elevated crop yield plateau. Considerable research would be required to provide predictive capacity with respect to where and when these practices are effective.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3