Control of water leakage from below the root zone by summer-active pastures is associated with persistence, density and deep rootedness

Author:

McCaskill M. R.,Kearney G. A.

Abstract

Temperate pastures that leak water below the root zone have been linked to an increase in dryland salinity in southern Australia through their conservative use of stored water. An experiment was conducted at Hamilton in south-western Victoria to test the hypothesis that deep-rooted, summer-active perennial pasture species can substantially reduce leakage. On topographic crests the experiment compared lucerne and chicory with a traditional perennial ryegrass variety with low summer activity, whereas on the poorly drained valleys the comparison was between tall fescue, kikuyu and a perennial ryegrass variety with high summer activity. Lucerne developed a buffer of dry soil to a depth of at least 5 m. An empirical relationship with June–September rainfall indicated that with this dry buffer, leakage below the root zone would not occur even in the wettest of years. Chicory developed a dry buffer to the depth of measurement (3 m), but plant density gradually declined and leakage started to occur 5 years after sowing. The perennial ryegrass with low summer activity had leakage nearly every year. On the valleys kikuyu was initially the most effective at drying the soil in summer, but its density declined at the expense of annuals and 3 years after sowing it became wetter than the other treatments. None of the pasture options on the valley fully controlled leakage, but both the summer-active perennial ryegrass and tall fescue were persistent and there was little difference in their capacity to extract summer moisture. This study showed that four characteristics were associated with a pasture that controlled leakage – summer activity, persistence, adequate density and deep rootedness. Of the species tested only lucerne satisfied all these criteria.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3