Microgravity modelling by two-axial clinorotation leads to scattered organisation of cytoskeleton in Arabidopsis seedlings

Author:

Pozhvanov GregoryORCID,Sharova ElenaORCID,Medvedev SergeiORCID

Abstract

Proper plant development in a closed ecosystem under weightlessness will be crucial for the success of future space missions. To supplement spaceflight experiments, such conditions of microgravity are modelled on Earth using a two-axial (2A) clinorotation, and in several fundamental studies resulted in the data on proteome and metabolome adjustments, embryo development, cell cycle regulation, etc. Nevertheless, our understanding of the cytoskeleton responses to the microgravity is still limited. In the present work, we study the adjustment of actin microfilaments (MFs) and microtubules (MTs) in Arabidopsis thaliana (L.) Heynh. seedlings under 2A clinorotation. Modelled microgravity resulted in not only the alteration of seedlings phenotype, but also a transient increase of the hydrogen peroxide level and in the cytoskeleton adjustment. Using GFP-fABD2 and Lifeact-Venus transgenic lines, we demonstrate that MFs became ‘scattered’ in elongating root and hypocotyl cells under 2A clinorotation. In addition, in GFP-MAP4 and GFP-TUA6 lines the tubulin cytoskeleton had higher fractions of transverse MTs under 2A clinorotation. Remarkably, the first static gravistimulation of continuously clinorotated seedlings reverted MF organisation to a longitudinal one in roots within 30 min. Our data suggest that the ‘scattered’ organisation of MFs in microgravity can serve as a good basis for the rapid cytoskeleton conversion to a ‘longitudinal’ structure under the gravity force.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3