Riparian and adjacent upland forests burned synchronously during dry years in eastern Oregon (1650–1900 CE), USA

Author:

Harley Grant L.,Heyerdahl Emily K.,Johnston James D.,Olson Diana L.

Abstract

Riparian forests link terrestrial and freshwater communities and therefore understanding the landscape context of fire regimes in these forests is critical to fully understanding the landscape ecology. However, few direct studies of fire regimes exist for riparian forests, especially in the landscape context of adjacent upland forests or studies of long-term climate drivers of riparian forest fires. We reconstructed a low-severity fire history from tree rings in 38 1-ha riparian plots and combined them with existing fire histories from 104 adjacent upland plots to yield 2633 fire scars sampled on 454 trees. Historically (1650–1900), low-severity fires burned more frequently in upland than in riparian plots, but this difference was not significant (P=0.15). During more than half of the fire years at both sites, fires were extensive and burned synchronously in riparian and upland plots, and climate was significantly dry during these years. However, climate was not significantly dry when fires burned in only one plot type. Historically, entire riparian zones likely burned in these two study sites of the Blue Mountains during dry years. This study suggests that riparian and upland forests could be managed similarly, especially given the projected increases to fire frequency and intensity from impending climate change.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contemporary wildfires further degrade resistance and resilience of fire-excluded forests;Forest Ecology and Management;2022-02

2. Fire, Flood and Pantanal Vegetation;Flora and Vegetation of the Pantanal Wetland;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3