Distribution of perfluoroalkyl compounds and mercury in fish liver from high-mountain lakes in France originating from atmospheric deposition

Author:

Ahrens Lutz,Marusczak Nicolas,Rubarth Janne,Dommergue Aurélien,Nedjai Rachid,Ferrari Christophe,Ebinghaus Ralf

Abstract

Environmental context.Perfluoroalkyl compounds and mercury are of rising concern because of their persistency, bioaccumulation potential and possibly adverse effects on humans and wildlife. In the present study, perfluoroalkyl compounds and mercury were quantified in fish liver from high-mountain lakes in which the contamination originated from atmospheric deposition. This study improves our understanding of atmospheric transport and deposition of these contaminants. Abstract.Perfluoroalkyl compounds (PFCs) and total mercury (THg) were investigated in fish liver collected from four high-mountain lakes in the French alps in which the water was fed only by atmospheric deposition. Concentrations of various PFCs, including C9–C15 perfluoroalkyl carboxylates (PFCAs) and perfluorooctane sulfonate (PFOS) were quantified. The PFOS concentration was similar in all high-mountain lakes with mean concentrations ranging from 3.61–4.24 ng g–1 wet weight (ww) indicating homogeneous atmospheric deposition. Conversely, the spatial distribution of PFCAs and THg was strongly influenced from a different emission source, which is probably the city of Grenoble, which resulted in significantly higher concentration levels of ∑PFCAs in three lakes (P < 0.001) and of THg in two lakes (P < 0.05) located easterly from Grenoble. Furthermore, the positive correlation between PFCAs and THg suggest similar transport and bioaccumulation pathways. The contribution of the longer chain PFCAs decreased with increasing distance from the local source area of Grenoble, which could be attributed to their less pronounced transport potential. Results from this study demonstrate that the contamination of PFCs and THg in the fish of the high-mountain lakes originated from atmospheric deposition and subsequent bioaccumulation.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3