The contribution of stem reserves to grain development in a range of wheat cultivars of different height

Author:

Rawson HM,Evans LT

Abstract

Six wheat cultivars with more than a twofold range in stem height and weight were grown at 21/16°C in 16-hr days of high light intensity. Changes with time in photosynthesis, respiration, dry weight, and the distribution of 14C fed to the flag leaf or ear of the main stem were followed in all cultivars. The effects on grain yields, stem weights, and 14C distribution of prevention of photosynthesis by the ears or by the rest of the plant during grain filling were also examined. Substantial losses of dry weight from the stem occurred during the most rapid period of grain filling, but stem weights then rose again in most cultivars. About one-third of the early loss in stem weight of control plants was due to stem respiration, the remainder to mobilization, but cultivars differed in these proportions, the respiration rate of stems per unit dry weight being higher in the shorter cultivars. The assimilates mobilized from the stems were equivalent to 2.7–12.2% of final grain weight in control ears. Mobilization increased when photosynthesis was reduced, particularly that from the lower internodes, which indicated that grain yields in the control plants were not limited by lack of assimilate. Balance sheets derived from gas analysis measurements supported this conclusion. The amount of material lost from the stems of plants in all the conditions employed, measured as dry weight or as 14C, was unrelated to stem height. Tall cultivars were no more dependent than short ones on stem reserves, and no more able to draw on reserves for grain filling in conditions limiting photosynthesis. Nor was there evidence that stem growth in tall cultivars was more likely to compete with grain growth. The cultivars differed more than threefold in the rate of ear filling. High growth rate per ear was associated with high yield and grain number per ear and with slow initial growth of the grains.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3