Changes in soil C, N and δ15N along three forest–pasture chronosequences in New Zealand

Author:

Mudge P. L.,Schipper L. A.,Baisden W. T.,Ghani A.,Lewis R. W.

Abstract

Changes in total soil carbon (C), nitrogen (N) and natural-abundance N isotopes (δ15N) were measured along three forest-to-pasture chronosequences on pumice soils in the Central North Island of New Zealand. On each of the three chronosequences, exotic pine forests had been converted to intensive dairy pastures 2–11 years before sampling and samples were also taken from remaining pine forests and long-term pastures (40–80 years old). The primary objective of the study was to test the hypothesis that surface-soil δ15N would increase over time following conversion of forest to pasture, due to greater N inputs and isotope-fractionating N losses (e.g. ammonia volatilisation) in pasture systems. Results supported our hypothesis, with linear regression revealing a significant (P < 0.001) positive correlation between log-transformed pasture age (log10[pasture age + 1]) and surface-soil δ15N. There was also a positive correlation (P < 0.001) between pasture age and total soil C and N, and a negative correlation of pasture age with C : N ratio. Surface-soil δ15N was also positively correlated (P < 0.001) with total soil N, and negatively correlated with C : N ratio when C : N was <13.6. These results suggested that as soils became more N-‘saturated’, isotope-fractionating N loss processes increased. Surface-soil δ15N in the pine forests was significantly less than subsoil δ15N, but there was no significant difference between the surface and subsoil in the long-term pastures, due to 15N enrichment of the surface soil. The difference in δ15N between the surface soil and subsoil may be a useful indicator of past land management, in addition to absolute δ15N values of surface soils.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3