Influence of end-grazing forage residual and grazing management on lamb growth performance and crop yield from irrigated dual-purpose winter wheat

Author:

Miller D. R.,Dean G. J.,Ball P. D.

Abstract

The effects of end-grazing forage residual and continuous v. rotational grazing systems on prime lamb performance, grain yield and quality were examined in an irrigated dual-purpose winter wheat (cv. Mackellar) crop in Tasmania. The design was a two end-grazing residual (400 and 800 kg/ha of dry matter (DM) at Zadoks Growth Stage 30, Low and High respectively, 0.2 ha plots) × two grazing system (continuously, or rotationally grazed in four subplots) factorial, replicated three times. Mixed-sex, second-cross lambs [37 kg liveweight (LW), 2.5 body condition score, 45 kg DM/head initial feed allowance] grazed for a total of 46 days before removal. Initial feed availability was 1875 kg DM/ha, with final residuals of 520 ± 57 and 940 ± 70 kg DM/ha for the Low and High treatments respectively. Particularly for the Low residual, in vitro DM digestibility and crude protein at stem elongation were reduced (P < 0.05) by rotational compared with continuous grazing. The weekly lamb growth rate (g/day) during the first 5 weeks of grazing was linearly related to average weekly available DM in kg/ha (GR = 0.35 ± 0.041 × DM – 194 ± 49.0, P < 0.01, R2 = 0.56). Total LW produced (336 ± 11.7 kg/ha), and grain yield (6.9 ± 0.21 t/ha), protein (11.4%), screenings <2.2 mm (10.9%) and 100 grain weights (3.82 g DM) were not different between treatments. There were no advantages of rotational grazing compared with continuous grazing. Irrigated dual-purpose winter wheat can be continuously grazed by lambs up to a 500 kg DM/ha residual at stem elongation without compromising total LW produced, grain yields or grain quality.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3