Effects of exogenous application of abscisic acid on membrane stability, osmotic adjustment, photosynthesis and hormonal status of two lucerne (Medicago sativa L.) genotypes under high temperature stress and drought stress

Author:

An Yuan,Zhou Peng,Liang Jinfeng

Abstract

This study was designed to examine effects of high temperature, drought and exogenous abscisic acid (ABA) on membrane stability, osmotic adjustment, photosynthesis and the hormone status of two lucerne (alfalfa, Medicago sativa L.) genotypes contrasting in heat tolerance: Ameristand 801S (AS801) (heat-tolerant), and Aohan (heat-sensitive), The results showed that AS801 had lower electrolyte leakage, but higher chlorophyll content, net photosynthetic rate, stomatal conductance, proline content, ABA content and zeatin riboside (ZR) content than Aohan during 72 h of heat stress under well-watered conditions. Under drought conditions, however, only proline content and ZR content in roots, electrolyte leakage in leaves and roots, net photosynthetic rate, and ABA content were significantly different between the two genotypes. A foliar application of ABA to heat-stressed plants significantly decreased electrolyte leakage and stomatal conductance, and increased recovery in growth and leaf water potential in the two genotypes under both watering conditions. The other physiological responses measured differed under drought or well-watered conditions, and appeared to be genotype-specific. These results suggest that the physiological responses of heat-sensitive and heat-tolerant lucerne to heat stress under different soil-water conditions varied. The heat-induced changes in proline accumulation in roots, electrolyte leakage in leaves and roots, and photosynthetic rate could serve as early instant stress indicators for evaluating the tolerance of lucerne genotypes to heat stress under different soil water conditions.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3