Impact of anions on the surface organisation of lipid monolayers at the air–water interface

Author:

Li Siyang,Du Lin,Wang Wenxing

Abstract

Environmental contextLipids released from lysis of phytoplankton cells are enriched in the sea surface microlayer. Such surface-active organics can be transferred through bursting bubbles to sea-spray aerosols where they can influence atmospheric chemistry. The results presented here suggest that phospholipids combine more readily with SO42− than with Br−, leading to enrichment of organic-coated sulfate salts in marine aerosols. AbstractInorganic salts and organic matter are known to be present at higher levels in the sea surface microlayer and marine aerosols; however, the impact of common anions on their surface properties is not well understood. Here, a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer was enriched with the sodium and ammonium salts of different anions (Br−, Cl−, NO3−, SO42−, CH3COO−, and HCO3−), and the effects on the surface properties of the monolayer were investigated. The monolayer phase behaviour and the structure of the lipid phases were studied by surface pressure–area (π–A) isotherms and infrared reflection-absorption spectroscopy (IRRAS). The presence of salts in the subphase was found to increase the surface pressure of the DPPC monolayer at a fixed area per molecule. The effect of the anions follows the order of the Hofmeister series. The higher concentration of salt solution caused the π–A isotherm to shift to larger area. The IRRAS spectra demonstrate that the ordering of the DPPC molecules in the liquid condensed phase remains essentially unaffected, even at higher electrolyte concentrations. DPPC molecules combined with SO42− could be transferred from the ocean to sea spray aerosol. The present study finds that the anions have significant influence on the surface organisation and, consequently, the interfacial properties, of the surface-active species at the air–water interface, a finding that has further implications for atmospheric aerosol nucleation.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3