Increased productivity of rainfed lowland rice cropping systems of the Mekong region

Author:

Fukai Shu,Ouk Makara

Abstract

Rice in Thailand, Laos and Cambodia (the Mekong region) is grown mostly as a mono crop once a year in the wet season in the rainfed lowlands. Some lowland areas have access to irrigation water, and rice double cropping is practised while non-rice crops are grown in a limited area in the dry season after harvesting wet season rice. In all cases wet season rice is grown mostly for subsistence under rainfed with low input, and combined with low soil fertility and frequent occurrence of drought, the yield is generally low with a mean of 2.5 t/ha and the yield increase was slow in recent years. More recently demand for labour in the regional centres has caused labour shortages in the rural area and rice crops may not be managed in the traditional manner such as the practice of manually transplanting of rice seedlings. For the last two decades research efforts have been made to minimise the adverse effect of abiotic factors and to meet the changing nature of the socioeconomic environment, resulting in increased understanding of factors determining productivity of rainfed lowland rice and the cropping systems based on it. This review describes such achievements in five sections – water environment characterisation to quantify drought problems, soil environment and fertiliser management, direct seeding to develop technology to cope with the labour shortage, variety improvement for rainfed lowland rice in drought-prone environment, and crop intensification and diversification that shift practices from traditional subsistence agriculture to more market-oriented agriculture. Each section is concluded with issues for future research need. The last section of the paper describes future research challenges for the rainfed rice-based lowland cropping systems in the Mekong region and possible implication on rainfed lowland rice system on other regions.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3