Yield components of nodulated cowpea (Vigna unguiculata) and maize (Zea mays) plants grown with exogenous phosphorus in different cropping systems

Author:

Ndakidemi Patrick A.,Dakora Felix D.

Abstract

A 2-factorial experiment, involving three levels of phosphorus (0, 40, and 80 kg/ha) and four cropping systems (mono crop, maize–cowpea inter-row, maize–cowpea intra-row, and maize–cowpea intra-hole cropping) was conducted in the field for two consecutive years in 2003 and 2004 at Nietvoorbij (33°54′S, 18°14′E), Stellenbosch, South Africa. Plant density (number of plants per hectare) was 166 666 for sole cowpea, 111 111 for maize–cowpea inter-row, 55 555 for maize–cowpea intra-row and 55 555 for maize–cowpea intra-hole cropping. Applying 40 or 80 kg phosphorus (P)/ha significantly increased cowpea grain yields by 59–65% in 2003 and 44–55% in 2004. With maize, the increases in grain yield were 20–37% in 2003 and 48–55% in 2004 relative to the zero-P control. In both cropping seasons, the number of pod-bearing peduncles per plant, the number of pods per plant, the number of seeds per pod, and grain yield per cowpea plant were significantly increased with the application of exogenous P. In contrast, the number of pod-bearing peduncles per plant, the number of pods per plant, the number of seeds per pod, and the grain yield per plant were all significantly depressed by mixed culture relative to mono crop cowpea. There was also a significant interactive effect of P and cropping system on cowpea, such that, all cowpea yield components were generally lower in intercrop relative to mono crop. In all instances, the yield component of mono crop cowpea and, to some extent, inter-row cowpea, were markedly increased by the provision of 40 or 80 kg P/ha relative to the zero-P control. Intercropping maize with cowpea produced higher total yields per unit land area than the mono crop counterpart.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3