Subcellular Partitioning and the Prediction of Cadmium Toxicity to Aquatic Organisms

Author:

Wang Wen-Xiong,Rainbow Philip S.

Abstract

Environmental Context. There is a considerable interest in predicting cadmium (Cd) toxicity to aquatic organisms, largely stemming from environmental Cd pollution and the need to establish water quality criteria to protect aquatic ecosystems. Chemistry-orientated models have been developed over the past decades to predict Cd toxicity, focusing on identifying which Cd forms are present in the aquatic environment, and investigating their interaction with the biological site of action. Understanding the cellular fates of Cd may provide an alternative method to predict Cd toxicity, as the complex cellular interactions of Cd within the organisms can, in this way, be addressed. Abstract. The internal metal sequestration strategies of different aquatic organisms are complex and variable; thus it is a formidable task to predict metal toxicity. Metals accumulated by aquatic organisms are associated with different subcellular compartments (i.e. heat-sensitive proteins, heat-stable proteins (metallothioneins), granules, cellular debris, and organelles). Such subcellular partitioning is dynamic in response to metal exposure and other environmental conditions, and is metal- and organism-specific. Previous models predicting metal toxicity have relied on the free ion metal activity (i.e. the free ion activity model) or more recently on the metal binding with the proposed toxicological site of action (i.e. the biotic ligand model). Neither of these models considers the complexity of internal metal subcellular fractionation, which may significantly affect metal toxicity in aquatic organisms and subsequent trophic transfer of metals to consumers. Recent studies in small aquatic organisms have revealed that the subcellular partitioning model (SPM) may provide an improved method to predict Cd toxicity, but more studies are needed in the future.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3