The anodic oxidation of ethylxanthate on metal and galena electrodes

Author:

Woods R

Abstract

The products of the electrochemical oxidation of potassium ethylxanthate have been identified by infrared analysis and microanalysis for the constituent elements. The current efficiency for the formation of diethyl dixanthogen depends on the nature of the electrode, and at 0.5 V was found to be 100, 98, 90, c. 50, and 0% for platinum, gold, copper, galena, and lead respectively. The remainder of the current passed at this potential resulted in the formation of the metal xanthate.� Dixanthogen is formed on lead electrodes only at potentials of > 1.0 V, where lead xanthate is unstable with respect to oxides of the metal. The lead xanthate produced on a galena electrode at pH 9.1 involves the release of thiosulphate ions. The formation of lead xanthate by this reaction, followed by its reduction to lead, is shown to change the surface characteristics of a galena electrode to those of lead. However, the formation and reduction of the initial layers which takes place on cycling the electrode potential does not change a galena surface and cannot involve loss of sulphur from the surface to the solution. This supports the conclusion that the chemisorbed xanthate monolayer is first covered by dixanthogen and that lead xanthate forms only when bulk layers are produced.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control of Non-Ferrous Metal-Sulfide Minerals’ Flotation via Pulp Potential;Minerals;2023-12-01

2. A review on the electrochemistry of galena flotation;Minerals Engineering;2020-05

3. New Aspects of the Electroadsorption of Ethyl Xanthate on Copper Electrodes;The Journal of Physical Chemistry B;2005-11-10

4. Xanthates;Ullmann's Encyclopedia of Industrial Chemistry;2000-06-15

5. On acidification of thiols to produce the corresponding disulfides;Heteroatom Chemistry;2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3