Loss of hamster Leydig cells during regression after exposure to a short photoperiod

Author:

Beltrán-Frutos E.,Seco-Rovira V.,Martínez-Hernández J.,Ferrer C.,Pastor L. M.

Abstract

The aim of the present study was to evaluate the changes that occur in hamster Leydig cells during regression. Animals were divided into control, mild regression (MR), strong regression (SR) and total regression (TR) groups. Leydig cells were characterised by light and electron microscopy. Terminal deoxyribonucleotidyl transferase-mediated dUTP–digoxigenin nick end-labelling (TUNEL) and proliferating cell nuclear antigen (PCNA) antibodies were used to detect apoptosis and proliferation respectively. Three types of Leydig cells (A, B and C) could be differentiated. Type A cells were small in size compared with Leydig cells from animals exposed to a long photoperiod, which was a result of a decreased cytoplasm and nucleus. Type B cells were even smaller than Type A cells in regression groups. Type C exhibited cytoplasm vacuolisation. The percentage of Type C cells from the control group was much lower than in the MR, SR and TR groups. (P < 0.05). In the SR and TR groups, there was a significant decrease in the percentage of Type B cells compared with the control and MR groups (P < 0.05). The total number of Leydig cells decreased during testicular regression (P < 0.05). The total number of Type A and B cells was significantly lower in the MR, SR and TR groups compared with the control group (P < 0.05). There were no significant differences in the proliferation and apoptosis index in the groups studied. The findings of the present study indicate that there are three types of Leydig cells (A, B and C) in all hamsters studied and that regression causes an increase in the number of Type C cells, so that the reduction in the number Leydig cells during the phases of regression studied must be the result of necrosis and/or necroptosis.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3