Myometrial transcriptional regulation of the gap junction gene, connexin-43

Author:

Lefebvre DL,Piersanti M,Bai XH,Chen ZQ,Lye SJ

Abstract

The mechanisms that enable the myometrium to switch from a state of relative quiescence during pregnancy to a muscle that is spontaneously active, very responsive to endogenous uterotonins and exhibits a high degree of cell-cell coordination are poorly understood. It is hypothesized that this switch or 'activation' of the myometrium results from the coordinated expression of a cassette of 'contraction-associated proteins'. The molecular mechanisms that regulate the expression of one of these, namely the myometrial gap junction protein connexin-43 (Cx-43), have been analysed. Myometrial Cx-43 expression is significantly increased during labour, associated with an increase in plasma oestrogen:progesterone, and positively regulated by oestrogen in non-pregnant rats. The genomic structure of the murine Cx-43 gene and the sequence of its 5' flanking sequence are reported here. This region functions as a promoter and contains several putative cis-acting elements which may be important in the regulation of Cx-43 transcription. Among these elements are several half-palindromic sequences that may function as oestrogen response elements and several AP-1 sites that may bind the transcription factors Fos and Jun. Oestrogen treatment of cells transiently transfected with a plasmid containing the Cx-43 promoter linked to the chloramphenicol acetyl transferase (CAT) gene, increased CAT activity indicating that the murine Cx-43 gene is oestrogen responsive. In addition, treatment of rats with oestrogen significantly increased mRNA encoding c-fos and c-jun in the myometrium and this occurred before any increase in Cx-43 mRNA. These data suggest that oestrogen may increase transcription of the Cx-43 gene through direct mechanisms (via the putative oestrogen response elements) or indirect mechanisms (by increased expression of c-fos and c-jun acting via the putative AP-1 sites). Since oestrogen may be an important modulator of myometrial activation, these mechanisms may be critical to the processes leading to increased synthesis of gap junctions at term and, hence, to the onset of labour.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3