Observations of energy transport and rate of spreads from low-intensity fires in longleaf pine habitat – RxCADRE 2012

Author:

Butler B.,Teske C.,Jimenez D.,O'Brien J.,Sopko P.,Wold C.,Vosburgh M.,Hornsby B.,Loudermilk E.

Abstract

Wildland fire rate of spread (ROS) and intensity are determined by the mode and magnitude of energy transport from the flames to the unburned fuels. Measurements of radiant and convective heating and cooling from experimental fires are reported here. Sensors were located nominally 0.5 m above ground level. Flame heights varied from 0.3 to 1.8 m and flaming zone depth varied from 0.3 to 3.0 m. Fire ROS derived from observations of fire transit time between sensors was 0.10 to 0.48 m s–1. ROS derived from ocular estimates reached 0.51 m s–1 for heading fire and 0.25 m s–1 for backing fire. Measurements of peak radiant and total energy incident on the sensors during flame presence reached 18.8 and 36.7 kW m–2 respectively. Peak air temperatures reached 1159°C. Calculated fire radiative energy varied from 7 to 162 kJ m–2 and fire total energy varied from 3 to 261 kJ m–2. Measurements of flame emissive power peaked at 95 kW m–2. Average horizontal air flow in the direction of flame spread immediately before, during, and shortly after the flame arrival reached 8.8 m s–1, with reverse drafts of 1.5 m s–1; vertical velocities varied from 9.9 m s–1 upward flow to 4.5 m s–1 downward flow. The observations from these fires contribute to the overall understanding of energy transport in wildland fires.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3