Effect of phosphate solubilising bacteria (Enterobacter cloacae) on phosphorus uptake efficiency in sugarcane (Saccharum officinarum L.)

Author:

Safirzadeh SaeedORCID,Chorom Mostafa,Enayatizamir Naeimeh

Abstract

Phosphorus (P) is an essential nutrient in sustainable production of sugarcane. Due to low labile P in soil under sugarcane cultivation, evaluation of the efficiency of P uptake and the application of phosphate solubilising bacteria (PSB) play important roles in management of P fertiliser. To investigate the effect of using PSB on P uptake in sugarcane (variety CP57–614), a pot experiment was conducted with three replications in greenhouse conditions. The treatments were a combination of three P rates (0 (P0), 50 and 100% (~40 mg kg−1) as triple superphosphate, and two PSB strains (Enterobacter cloacae R13 (R13) and R33 (R33)) which were applied independently and simultaneously. Morphological characteristics of sugarcane and some biochemical parameters were evaluated in the rhizosphere at three harvesting times: 60, 95 and 140 days after planting (DAP). Whereas in low available P (P0), bacterial strain R33 improved P uptake along with sugarcane ageing, P uptake was diminished in non-inoculated treatment over time. Activity of PSBs in the rhizosphere (especially strain R33) prevented the sharp fall of P influx after 95 DAP in low available P condition. Indeed, activity of R33 in the rhizosphere decreased the dependence of P uptake on root development via improving P uptake. Therefore, influx was the main mechanism of P uptake in sugarcane. Sugarcane inoculated by PSBs acquired 76 and 81% of total P uptake from non-Olsen-P fraction in P0R13 and P0R33 respectively at 95 DAP. However, this amount was lower (70.4%) in P0R0. Furthermore, strain R33 improved P uptake efficiency in sugarcane by changing root morphology (e.g. specific root length and root length) and reducing soil limitations (e.g. enhancement of P compound solubility and P influx).

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3