Author:
Gao Jiabin,Djaidi Djamal,Marjo Christopher E.,Bhadbhade Mohan M.,Ung Alison T.,Bishop Roger
Abstract
The poorly soluble racemic compound 6,6a,13,13a-tetrahydropentaleno[1,2-b:4,5-b′]diquinoline (4) has an exceptionally high melting point range of 352–354°C despite its low molar mass (308.38) and a structure containing only 40 atoms (38 of which are C and H). Analysis of the X-ray crystal structure and Hirshfeld surface of 4, along with comparison with its isostructural homologue 2, reveals how this occurs in the absence of Pauling-type hydrogen bonding. Excellent complementarity between homochiral molecules of 4 allows formation of enantiomerically pure layers using C–H⋯π, aromatic π⋯π, and C–H⋯N interactions. The alternating layers of opposite handedness are then crosslinked by means of aza-1,3-peri hydrogen interactions. This bifurcated C–H⋯N⋯H–C motif acts as a molecular clip creating a highly rigid network structure. The role of weaker intermolecular forces in influencing the solubility and bioavailability of potential drug molecules is discussed in the context of the popular Lipinski ‘rule of 5’ guidelines.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献