Impact of hot weather on animal performance and genetic strategies to minimise the effect

Author:

Pryce Jennie E.ORCID,Nguyen T. T. T.,Cheruiyot E. K.,Marett L.,Garner J. B.,Haile-Mariam M.

Abstract

Dairy cows in Australia and New Zealand are generally kept outdoors, making them susceptible to weather variability and in particular heat stress. In this paper, we review (1) exploiting genetic variability to improve heat tolerance, (2) genotype by environment interactions, i.e. suitability of high merit cows to weather variability and (3) how novel phenotyping and genomics can help improve heat tolerance. Selection for heat tolerance is a permanent and cumulative strategy and especially useful in grazing situations where management practices, such as cooling mechanisms, are sometimes impractical. Australia was the first country in the world to release breeding values for heat tolerance in dairy cattle nationally in 2017. The breeding value captures genetic variation in the reduction of milk production traits with rising temperature and humidity. The breeding values have been validated in independent studies (in Victoria, Australia, and California, USA), showing that thermotolerant cows maintain a lower core body temperature under hot and humid conditions. Genotype by environment interactions for traits sensitive to heat is only a concern for farms in very extreme conditions and therefore affect only a small proportion of individuals (those in the extreme 5th percentile). Heat tolerance is a complex trait in that in addition to milk traits, health and fertility may also be affected. Next-generation heat tolerance breeding values may include sensor device information in addition to changes in milk composition, or other measurable biomarkers. This is especially useful when measured in genotyped female populations. Research into novel ways of measuring heat tolerance could transform the way we select for this trait and capture more of the complexity of this trait. To be successful in this area, multi-disciplinary collaboration among animal scientists is likely to facilitate this goal. Combining genomics, traditional and novel measures of heat tolerance with intermediate metabolic biomarkers and prioritised genetic variants could be a way to capture the complexity of thermotolerance in future heat tolerance breeding values. Finally, selecting cows that are resilient to variability in weather is feasible and heat tolerance is a good example of this.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3