Buds, bushfires and resprouting in the eucalypts

Author:

Burrows G. E.

Abstract

Eucalypts encounter a wide range of severe disturbances such as extensive defoliation by insects, major structural damage from cyclonic winds, as well as foliage and bark loss during drought and fire. Most healthy, mature eucalypts are not killed by these events, but regenerate vegetatively. With increasing intensity of disturbance, resprouting first occurs from the accessory buds in the small-diameter branchlets of the crown, followed by the epicormic buds in the medium- and large-diameter branches and stems, and then from the buds of the lignotuber. All these modes of regeneration are ultimately dependent on preventitious buds and, thus, the present review concentrates on axillary buds, their subsequent development into epicormic or lignotuber buds and their degree of protection from fire. The eucalypts have remarkably abundant, well protected and anatomically distinctive bud-forming structures in their leaf axils, branches, stems and lignotubers. These structures are quite consistent across this large genus, but are generally different from resprouting structures in many other plants. From an anatomical perspective, these structures seem best adapted to regeneration after fire, rather than damage from insects, storms or drought and this also correlates with ecological observations. On a worldwide basis, the eucalypts are some of the most successful post-fire resprouters, especially epicormic resprouting after medium- and high-intensity fires. Given the apparent ecological advantages of epicormic resprouting (the rapid reestablishment of extensive leaf area while simultaneously shading basal resprouters and seedlings) this could be an important factor in the success of eucalypts in Australia. Recent phylogenetic analysis has indicated a long relationship between eucalypts, fire and bud structures that facilitate resprouting.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3