Electrochemical aspects of leaching copper from chalcopyrite in ferric and cupric salt solutions

Author:

Parker AJ,Paul RL,Power GP

Abstract

Electrochemical aspects of semiconductors are used to interpret well established observations on the kinetics of leaching of chalcopyrite. The oxidation of this n-type semiconductor is dominated by a surface film which is thermally unstable and breaks down in CS2, acetone or acidified water, or under dry nitrogen, over comparable time periods. The film is thought to be a semiconductor metal-deficient polysulfide which slows transport of Cu+ and Fe2+ products, slows electron transfer to oxidants such as Fe3+ and Cu2+, and dramatically slows supply of holes and thus electron transfer from reduced species such as Fe2+ on corroding chalcopyrite. Thus the Fe3+/Fe2+ couple (especially as sulfate) is much less reversible on corroding chalcopyrite than on pyrite or platinum. The couples Cu2+/Cu+,I3-/I- and Fe(CN)63-/Fe(CN)64- are more reversible than Fe3+ /Fe2+ but all couples are much less reversible on chalcopyrite than on pyrite. A layer of sulfur forms on corroding chalcopyrite, but this is not the species which slows transport of ions and transfer of electrons. A mixture of Fe3+/Cu2+ chlorides is one of the more effective oxidants for CuFeS2 because of relatively fast electron transfer from corroding chalcopyrite to Cu2+ and oxidation of Cu+ by Fe3+. Catalysis by iodine and by inclusion of Ag2S or FeS2 in natural chalcopyrite is explained by the electrochemical model.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3