Decomposition of Mercuric Chloride and Application to Combustion Flue Gases

Author:

Wilcox Jennifer,Blowers Paul

Abstract

Environmental Context. The toxicity of the volatile metal mercury is well known; this Hg0 form accounts for about 99% of atmospheric mercury and the remainder the water-soluble oxidized (Hg+, Hg2+) form. The release of mercury from the atmosphere is measurable by a drop in the Hg0 levels, but to establish realistic scientific and regulatory standpoints the rate in which Hg0 converts to the oxidized forms needs to be understood. Conversely, from an industrial standpoint, understanding the rate at which the oxidized forms convert to Hg0 allows for better waste-scrubbing processes. Abstract. Theoretical rate constants and activation energies are predicted for the decomposition of mercuric chloride through the use of relativistic pseudopotentials for mercury at the B3LYP level of theory. The method and basis set combinations are validated through a comparison of theoretically determined geometries, frequencies, and reaction enthalpies to experimental values found in the literature. In addition, the theoretically predicted rate constants are compared to rate constants that have been predicted through combustion modelling of this reaction.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3