Water extraction under terminal drought explains the genotypic differences in yield, not the anti-oxidant changes in leaves of pearl millet (Pennisetum glaucum)

Author:

Kholová Jana,Vadez Vincent

Abstract

Pearl millet (Pennisetum glaucum (L.) R.Br.) is a resilient crop suiting the harshest conditions of the semi-arid tropics, in which we assessed possible relationships between crop tolerance, anti-oxidative enzyme activity and plant/soil water status. Biochemical acclimation and cell homeostasis traits have been proposed as critical for the drought tolerance of crops, but their limited practical application in breeding so far suggests that the role of biochemical acclimation for drought tolerance is still unclear. Previous research may have been of limited value because it has not approached biochemical acclimation from the angle of plant water relations. Four pearl millet genotypes, contrasting for terminal drought tolerance, were evaluated (sensitive H77/833–2, tolerant PRLT2/89–33 and two near isogenic lines carrying a terminal drought tolerance quantitative trait locus) under water-stress (WS) and well-watered (WW) conditions in a lysimetric system that simulates field-like conditions. We assessed the genotypic variation and relationship between photosynthetic pigments (chlorophylls a and b and carotenoids), antioxidative isoenzymatic spectrum (superoxide dismutase, ascorbate peroxidase and catalase), physiological traits (soil moisture available, normalised transpiration, stay-green score and water extraction) and biomass and yield. Biochemical traits investigated were tightly related among each other under WS conditions but not under WW conditions. Two major ascorbate peroxidase isoforms (APX6&7), whose variation in both water regimes reflected the presence/absence of the drought tolerance quantitative trait locus, were identified, but these did not relate to yield. Both, yield and biochemical traits under terminal drought stress were closely related to the traits linked to plant/soil water status (soil moisture available, normalised transpiration, stay-green score and water extraction), whereas yield and the biochemical indicators were not correlated, except for one. It is concluded that there is no direct effect of biochemical traits on yield parameters since both are consequences of soil-plant water status and their putative relation appear to be secondary – through plant/soil water status.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3