Agronomic and environmental drivers of population size and symbiotic performance of Rhizobium leguminosarum bv. viciae in Mediterranean-type environments

Author:

Drew E. A.,Denton M. D.,Sadras V. O.,Ballard R. A.

Abstract

The population size and symbiotic performance (ability to fix N2) of rhizobia (Rhizobium leguminosarum bv. viciae) capable of nodulating field pea (Pisum sativum) were assessed in 114 soils from Mediterranean-type environments of southern Australia. All soils were collected in autumn, before the growing season, and had a history of crop legumes including field pea, faba bean, lentil, or vetch. The most probable number (MPN) technique, with vetch as a trap plant, was used to estimate the numbers of pea rhizobia in soils. Of the soils tested, 29% had low numbers of pea rhizobia (<100 rhizobia/g), 38% had moderate numbers (100–1000/g), and the remaining 33% had >1000/g. Soil pH, the frequency of a host crop in the rotation, and the number of summer days with a maximum temperature >35°C were strongly correlated with the pea rhizobia population size. Symbiotic performance (SP) of pea rhizobia in soils was assessed for soils with a MPN >100 rhizobia/g. An extract of the soils was used to inoculate two field pea cultivars growing in a nitrogen-deficient potting media in the greenhouse. Plants were grown for 5 weeks after inoculation and shoot dry matter was expressed as a percentage of the dry matter of plants grown with a commercial strain R. leguminosarum bv. viciae, SU303. Symbiotic performance ranged from 25 to 125%. One-quarter of the soils assessed had suboptimal SP (i.e. <70%). Soil and climatic variables were weakly associated with SP, with pH and average annual rainfall accounting for 17% of the variance. This research highlights the complexity of factors influencing population size and symbiotic performance of pea rhizobia in soils. Options for the improved management of populations of pea rhizobia in Mediterranean environments are discussed. Specifically, our data indicate that inoculation of pea crops is likely to be beneficial where pH(H2O) <6.6, particularly when summers have been hot and dry and when a host has been absent for ≥5 years, as numbers of rhizobia are likely to be below the thresholds needed to optimise nodulation and crop growth. New inoculation technologies and plant breeding will be required to overcome large populations of pea rhizobia with suboptimal SP.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3