Exploring the use of a fragmented landscape by a large arboreal marsupial using incidental sighting records from community members

Author:

Heise-Pavlov Sigrid R.,Gillanders Alan

Abstract

Effective conservation of large mammalian species within a human-modified landscape depends on the knowledge of their ability to utilise available suitable habitat within a matrix of unsuitable habitat. We use incidental sightings of Lumholtz’s tree-kangaroo (Dendrolagus lumholtzi) in north-eastern Australia that were recorded by community members in a non-standardised way to assess the functional connectivity of the highly fragmented landscape of the Atherton Tablelands for this species. By applying spatial analytical tools to available mapped information on landscape attributes and the reported sightings it was found that the species shows a low matrix resistance. Since most sightings within the matrix were found within 150 m of a patch with suitable habitat and the average distance between these patches was 77 m it can be concluded that Lumholtz’s tree-kangaroos are able to reach most fragmented suitable habitat given certain limitations of the accuracy of the used maps and sighting locations. Based on distances between suitable habitat patches and their predominant size of up to 2 ha we expect that the species can include several fragments into its home range. More sightings of Lumholtz’s tree-kangaroos than expected by chance within the matrix during dry seasons combined with shorter than expected distances into the matrix suggests the existence of seasonal resource-driven movements of this species. Due to the non-standardised nature of the data the derived conclusions need to be tested in rigorous scientific projects before they can be integrated into the development of conservation strategies for Lumholtz’s tree-kangaroos on the Atherton Tablelands.

Publisher

CSIRO Publishing

Subject

Nature and Landscape Conservation,Ecology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3