Environmental magnetism as a stream sediment tracer: an interpretation of the methodology and some case studies

Author:

Crockford R. H.,Fleming P. M.

Abstract

A comprehensive sediment sampling program was undertaken in the upper Molonglo catchment in south-eastern New South Wales to determine if mineral magnetics could be used to estimate sidestream contribution at river confluences in this environment. Some 12 confluences were examined over 1400 km 2 in 2 major basins and over 2 contrasting geological types. Sediment samples were divided into 7 size classes and the following magnetic properties measured: magnetic susceptibility at 2 frequencies, isothermal remanent magnetisation at 3 flux densities, and anhysteristic remanent magnetisation. The sidestream inputs were calculated for each particle size class from the range of magnetic parameters. Significant discrepancies and differences appeared in the resultant sidestream inputs, and this paper outlines the conclusions as to the reliability of the different analytical procedures. It is shown that both the concentration and magnetic grain size of ferrimagnetic minerals in the sediments must be taken into account. Where the difference in magnetic grain size between the upstream and sidestream sediments is small, the use of parameter crossplots or bulked magnetic ratios is generally not appropriate. The use of mass (concentration) magnetic values may be better. The difference in the demands of the crossplots and mass values methods is that crossplots require a wide range of mass magnetic concentrations in each branch, with the upstream and sidestream sediments having different magnetic grain sizes, whereas the mass values procedure does best with a very limited (but different) range of concentrations at the upstream and sidestream branches, but similar magnetic grain sizes. This paper provides an extensive discussion of the estimation technique using different parameter combinations, and uses 3 contrasting confluences as case studies.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3