Season and reproductive status rather than genetics factors influence change in ewe weight and fat over time. 1. Analysis of crossbred ewes

Author:

Walkom S. F.,Brien F. D.,Hebart M. L.,Fogarty N. M.,Hatcher S.,Pitchford W. S.

Abstract

The Australian sheep industry has historically made rapid advances in the quality and quantity of meat and wool through genetic improvement, but unfortunately, maternal performance, i.e. number of lambs weaned, is well below desired levels. The aim of the present paper is to investigate the potential to select for increased weight and fat across the production cycle to improve maternal performance. The analysis explores the potential to improve the weight and fat score of breeding ewes during ‘tough’ periods (i.e. when nutrient requirements are not met by the pasture), preparing the breeding ewe for the upcoming mating without an increase in overall ewe size. The 2846 ewes within the maternal central progeny test were weighed and scored for fatness 12 times across three production cycles. Low to moderate heritability estimates for weight (0.04–0.23) and fat (0.02–0.06) changes across the production cycle provide little hope for selection against weight loss during tough periods. The analysis showed very strong genetic correlations between time-points across multiple production cycles for both weight (0.99–0.93) and fat score (0.88–0.98). The very strong correlations between measurements suggest that weight and fat score are genetically the same trait throughout the ewe’s adult life. With 74% and 77% of the genetic variation in weight and fat, respectively, constant across the production cycle, there is little opportunity to select against the natural fluctuations in weight and fat reserves. In conclusion, selection for increased fat can be made at any time and it will result in more fat during tough times.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3