Author:
Berube Michelle,Jewell Katrina,Myers Kimberly D.,Knappett Peter S. K.,Shuai Pin,Hossain Abrar,Lipsi Mehtaz,Hossain Sadam,Hossain Alamgir,Aitkenhead-Peterson Jacqueline,Ahmed Kazi M.,Datta Saugata
Abstract
Environmental contextArsenic contamination of groundwater is a major environmental problem in many areas of the world. In south-east Asia, iron-rich reducing groundwater mixes with oxidising river water in hyporheic zones, precipitating iron oxides. These oxides can act as a natural reactive barrier capable of accumulating elevated solid-phase concentrations of arsenic.
AbstractShallow, anoxic aquifers within the Ganges–Brahmaputra–Meghna Delta (GBMD) commonly contain elevated concentrations of arsenic (As), iron (Fe) and manganese (Mn). Highly enriched solid-phase concentrations of these elements have been observed within sediments lining the banks of the Meghna River. This zone has been described as a Natural Reactive Barrier (NRB). The impact of hydrological processes on NRB formation, such as transient river levels, which drive mixing between rivers and aquifers, is poorly understood. We evaluated the impact of groundwater flow dynamics on hydrobiogeochemical processes that led to the formation of an Fe- and Mn-rich NRB containing enriched As, within a riverbank aquifer along the Meghna River. The NRB dimensions were mapped using four complementary elemental analysis methods on sediment cores: X-ray fluorescence (XRF), aqua regia bulk extraction, and HCl and sodium phosphate leaching. It extended from 1.2 to 2.4 m in depth up to 15 m from the river’s edge. The accumulated As was advected to the NRB from offsite and released locally in response to mixing with aged river water. Nearly all of the As was subsequently deposited within the NRB before discharging to the Meghna. Significant FeII release to the aqueous phase was observed within the NRB. This indicates the NRB is a dynamic zone defined by the interplay between oxidative and reductive processes, causing the NRB to grow and recede in response to rapid and seasonal hydrologic processes. This implies that natural and artificially induced changes in river stages and groundwater-tables will impact where As accumulates and is released to aquifers.
Subject
Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献