A framework to predict the effects of livestock grazing and grazing exclusion on conservation values in natural ecosystems in Australia

Author:

Lunt Ian D.,Eldridge David J.,Morgan John W.,Witt G. Bradd

Abstract

Grazing by domestic livestock has greatly degraded many Australian ecosystems and its legacy will be long-lasting in many areas. Although livestock are usually removed from conservation reserves because they are perceived to be incompatible with the conservation of natural ecosystems, they have been retained in several reserves in south-eastern Australia as a management tool to achieve conservation outcomes. These cases highlight the fact that no framework currently exists to address the question, under what circumstances (and in what ecosystems) is livestock grazing—or the removal of grazing—likely to have positive, negative, neutral or uncertain impacts on the diversity and composition of native plants? This paper provides a conceptual framework to predict the effects of livestock grazing and grazing exclusion on the conservation values of native vegetation across natural ecosystems in Australia. It should prove equally relevant to other ecosystems around the world which have evolved without heavy grazing by large herbivores. The framework is based on disturbance- and grazing-ecology literature from Australia and elsewhere, and incorporates the following six main factors: (1) impacts of livestock grazing on soil and ecosystem processes, (2) historical exposure to grazing, (3) site productivity, (4) relative palatability of dominant species, (5) species-specific factors influencing plant recruitment and (6) spatial scale and landscape context. These factors are integrated into a decision tree to describe the potential impacts of livestock on native vegetation in a particular area. Livestock grazing is likely to have detrimental impacts on conservation values in many ecological contexts, especially in relatively intact, uninvaded ecosystems on unproductive soils. By contrast, it may be a useful management tool to achieve conservation objectives where it either (1) controls the biomass of existing potentially dominant, grazing-sensitive plants (native or exotic), (2) prevents encroachment by undesirable, grazing-sensitive, potential dominants, (3) provides disturbance niches required by rare or significant plant species, (4) maintains fauna habitat structure or (5) enhances the diversity of species and vegetation structures across the landscape, especially when most of the landscape is ungrazed. In many cases, other disturbance regimes (especially burning) may achieve similar outcomes; however, other disturbances will not necessarily be more effective than grazing per se, especially in degraded or invaded areas. The framework provides a coarse-level filter to inform management decisions and to allow the findings from individual studies to be placed in a larger ecological context. Although the framework is intended to improve decisions about conservation management, it is clear that much more research is needed to assess the role of grazing exclusion in previously grazed ecosystems, and that modifications to current grazing regimes require testing, perhaps by using adaptive management principles, to ensure optimal outcomes for biodiversity conservation.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3