HIGH RESOLUTION PALAEOGEOGRAPHIC MAPPING OF THE FLUVIAL-LACUSTRINE PATCHAWARRA FORMATION IN THE COOPER BASIN, SOUTH AUSTRALIA

Author:

Strong P.C.,Wood G.R.,Lang S.C.,Jollands A.,Karalaus E.,Kassan J.

Abstract

Fluvial-lacustrine reservoirs in coal-bearing strata provide a particular challenge for reservoir characterisation because of the dominance of coal on the seismic signature and the highly variable reservoir geometry, quality and stratigraphic connectivity. Geological models for the fluvial gas reservoirs in the Permian Patchawarra Formation of the Cooper Basin are critical to minimise the perceived reservoir risks of these relatively deep targets. This can be achieved by applying high-resolution sequence stratigraphic concepts and finescaled seismic mapping. The workflow begins with building a robust regional chronostratigraphic framework, focussing on widespread lacustrine flooding surfaces and unconformities, tied to seismic scale reflectors. This framework is refined by identification of local surfaces that divide the Patchawarra Formation into high-resolution genetic units. A log facies scheme is established based on wireline log character, and calibrated to cores and cuttings, supported by analogue studies, such as the modern Ob River system in Western Siberia. Stacking patterns within each genetic unit are used to determine depositional systems tracts, which can have important reservoir connectivity implications. This leads to the generation of log signature maps for each interval, from which palaeogeographic reconstructions are generated. These maps are drawn with the guiding control of syn-depositional structural features and net/ gross trends. Estimates of fluvial channel belt widths are based on modern and ancient analogues. The resultant palaeogeography maps are used with structural and production data to refine play concepts, as a predictive tool to locate exploration and development drilling opportunities, to assess volumetrics, and to improve drainage efficiency and recovery during production of hydrocarbons.

Publisher

CSIRO Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3