Nitrogen Fixation by Nodulated Roots of Viminaria juncea (Schrad. & Wendl.) Hoffmans, (Fabaceae) When Submerged in Water

Author:

Walker BA,Pate JS,Kuo J

Abstract

Nodulated seedlings of Viminaria juncea were raised in free-draining or flooded sand culture. Unflooded seedlings developed limited amounts of aerenchyma in lower stem, root and nodules, and responded to flooding by accelerated aerenchyma production and, after 10 days, by formation of pneumatophores from their near-surface lateral roots. Continuously flooded seedlings showed earlier and greater development of aerenchyma and pneumatophores, and had their nodules and roots restricted to the upper 10 cm of the rooting medium. Aerenchyma was developed from an inner cambium, distinct from the outer phellogen which subsequently developed on older parts of stem, root and nodules. Gas contents of plant parts varied from 4-8% for organs with little aerenchyma to over 30% for the aerenchyma-invested basal stem and root of continuously flooded seedlings. A role of the sheaths of aerenchyma in gaseous exchange between aerial environment and nodulated root was demonstrated by gas injection experiments, in situ C2H2 reduction assays and 15N2 feeding experiments on intact plants with flooded roots. Samples of gas removed from the aerenchyma of plants exposed to C2H2 contained up to 14 times the amount of C2H2 and 4 times the amount of CO2 than in the atmosphere of the assay chamber, indicating that gas exchange for both N2 fixation and respiration occurred via the aerenchyma. Previously unflooded, 12-week seedlings exposed to 14 days flooding gained as much dry matter and total N in the 2-week treatment as did control unflooded plants, but 21-week continuously flooded seedlings showed only half the dry matter and nitrogen gains of similarly aged unflooded seedlings. Observations on the seasonal growth, nodulation and pneumatophore development of natural populations of the species were discussed in relation to the above findings.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3