Climate-driven mobilisation of acid and metals from acid sulfate soils

Author:

Simpson Stuart L.,Fitzpatrick Rob W.,Shand Paul,Angel Brad M.,Spadaro David A.,Mosley Luke

Abstract

The recent drought in south-eastern Australia has exposed to air, large areas of acid sulfate soils within the River Murray system. Oxidation of these soils has the potential to release acidity, nutrients and metals. The present study investigated the mobilisation of these substances following the rewetting of dried soils with River Murray water. Trace metal concentrations were at background levels in most soils. During 24-h mobilisation tests, the water pH was effectively buffered to the pH of the soil. The release of nutrients was low. Metal release was rapid and the dissolved concentrations of many metals exceeded the Australian water quality guidelines (WQGs) in most tests. The concentrations of dissolved Al, Cu and Zn were often greater than 100× the WQGs and strong relationships existed between dissolved metal release and soil pH. Attenuation of dissolved metal concentrations through co-precipitation and adsorption to Al and Fe precipitates was an important process during mixing of acidic, metal-rich waters with River Murray water. The study demonstrated that the rewetting of dried acid sulfate soils may release significant quantities of metals and a high level of land and water management is required to counter the effects of such climate change events.

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3