Ligand- and oxygen-isotope-exchange pathways of geochemical interest

Author:

Casey William H.

Abstract

Environmental context Most chemical processes in water are either ligand- or electron-exchange reactions. Here the general reactivity trends for ligand-exchange reactions in aqueous solutions are reviewed and it is shown that simple rules dominate the chemistry. These simple rules shed light on most molecular processes in water, including the uptake and degradation of pesticides, the sequestration of toxic metals and the corrosion of minerals. Abstract It is through ligand-exchange kinetics that environmental geochemists establish an understanding of molecular processes, particularly for insulating oxides where there are not explicit electron exchanges. The substitution of ligands for terminal functional groups is relatively insensitive to small changes in structure but are sensitive to bond strengths and acid–base chemistry. Ligand exchanges involving chelating organic molecules are separable into two classes: (i) ligand substitutions that are enhanced by the presence of the chelating ligand, called a ‘spectator’ ligand and (ii) chelation reactions themselves, which are controlled by the Lewis basicity of the attacking functional group and the rates of ring closure. In contrast to this relatively simple chemistry at terminal functional groups, substitutions at bridging oxygens are exquisitely sensitive to details of structure. Included in this class are oxygen-isotope exchange and mineral-dissolution reactions. In large nanometer-sized ions, metastable structures form as intermediates by detachment of a surface metal atom, often from a underlying, highly coordinated oxygen, such as μ4-oxo, by solvation forces. A metastable equilibrium is then established by concerted motion of many atoms in the structure. The newly undercoordinated metal in the intermediate adds a water or ligand from solution, and protons transfer to other oxygens in the metastable structure, giving rise to a characteristic broad amphoteric chemistry. These metastable structures have an appreciable lifetime and require charge separation, which is why counterions affect the rates. The number and character of these intermediate structures reflect the symmetry of the starting structure.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3