Agronomic assessment of the durum

Author:

Rebetzke G. J.ORCID,Rattey A. R.,Bovill W. D.,Richards R. A.,Brooks B. J.,Ellis M.

Abstract

The wheat Green Revolution Rht-B1b and Rht-D1b dwarfing alleles are associated with increased grain yields but also with reduced early growth and seedling emergence, especially if sowing conditions are unfavourable. The gibberellic acid-responsive, mutagen-derived Rht18 dwarfing gene was backcrossed from durum wheat (Triticum turgidum subsp. durum L.) cv. Icaro into tall bread wheat (Triticum aestivum L.) cv. Halberd using phenotypic selection for reduced plant height. The Rht18 allele was confirmed among homozygous BC1F2-derived, F5:7 recombinant inbred lines by using a chromosome 6AS-linked, microsatellite molecular marker (Xwms4608), and then assessed for agronomic performance across multiple field sites ranging in yield from 3.6 to 6.4 t/ha. The Rht18-containing lines were significantly (P < 0.05) shorter in height (−24%) and reduced in plant lodging (−51%) compared with tall sister lines. Reductions in plant height were associated with significant increases in grain yield (+16%), reflecting increases in grain number (+21%), number of spikes (+7%) and number of grains per spike (+12%). Coleoptile length, early shoot biomass and ground cover percentage were unaffected by the presence of the Rht18 dwarfing gene. Comparisons of effects of gibberellic acid-insensitive Rht-B1b and Rht18 on early growth and agronomic performance were assessed separately for a set of 30 BC5F6-derived Halberd near-isogenic lines in the field in 2015. Ground cover and coleoptile length were significantly greater for Rht18 lines, whereas plant height, lodging, harvest index, grain number and yield were similar for Rht-B1b and Rht18 sister lines. Reduced lodging and increased grain number and yield, together with greater coleoptile length, indicate a potentially useful role for Rht18 in improving wheat performance.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3