Crystal field spectra of d3,7 ions. VI. The weak field formalism and covalency

Author:

Ferguson J,Wood DL

Abstract

When the problem of an ion in a crystal field is solved using the unperturbed atomic wave functions as basis functions, the free ion energies appear explicitly in the diagonal terms of the secular determinant where they can be adjusted as experimental parameters. By fitting the observed crystal field energy levels in this scheme, a set of modified free ion energy levels can be derived for Dq = 0, and it is found that in most cases a single set of electrostatic repulsion parameters F2 and F4 describes the energies, provided a Trees correction is applied. The values of F2 and F4 obtained in this way from crystal spectra of Cr3+ in ruby, yttrium gallium garnet, other oxides, and K3Cr(CN)6 and of Co2+ in ZnAl2O4 are reduced by covalency from their free ion values. The reduction for P2 is greater than for F4 because of its greater sensitivity to the outer part of the radial distribution function, where covalency plays its major part. It is concluded that the differential expansion of the t2 and e orbitals in the crystal field is not great, and that nephelauxetic effects in crystal field spectra should more properly be related to the F2 and F4 parameters of Condon and Shortley through the weak field formalism, rather than to Racah's B parameter in the strong field approach. The latter results in unsound conclusions about the effects of covalency. Analysis of the spectra of CrBrs and C0C14" suggests that the d electrons are not adequately described by two electrostatic repulsion parameters and the usual crystal field theory should be applied cautiously.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3