Modelling crop growth and yield under the environmental changes induced by windbreaks 1. Model development and validation

Author:

Meinke H.,Carberry P. S.,Cleugh H. A.,Poulton P. L.,Hargreaves J. N. G.

Abstract

Yield advantages of crops grown behind windbreaks have often been reported, but underlying principles responsible for such changes and their long-term consequences on crop productivity and hence farm income have rarely been quantified. Physiologically and physically sound simulation models could help to achieve this quantification. Hence, the APSIM systems model, which is based on physiological principles such as transpiration efficiency and radiation use efficiency (termed here APSIMTE), and the Soil Canopy Atmosphere Model (SCAM), which is based on the Penman–Monteith equation but includes a full surface energy balance, were employed in developing an approach to quantify such windbreak effects. This resulted in a modified APSIM version (APSIMEO), containing the original Penman equation and a calibration factor to account for crop- and site-specific differences, which were tested against field data and simulations from both the standard APSIMTE and SCAM models. The APSIMEO approach was tested against field data for wheat and mungbean grown in artificial enclosures in south-east Queensland and in south-east Western Australia. For these sheltered conditions, daily transpiration demand estimates from APSIMEO compared closely to SCAM. As the APSIMEO approach needed to be calibrated for individual crops and environments, average transpiration demand for open field conditions predicted by APSIMEO for a given site was adjusted to equal that obtained using APSIMTE by modifying a calibration parameter β. For wheat, a β-value of 1.0 resulted in best fits for Queensland, while for Western Australia a value of 0.85 was necessary. For mungbean a value of 0.92 resulted in the best fit (Qld). Biomass and yields simulated by APSIMTE and the calibration APSIMEO for wheat and mungbean grown in artificial enclosures were generally distributed around the 1:1 line, with R2 values ranging from 0.92 to 0.97. Finally, APSIMEO was run at 2 sites using long-term climate data to assess the likely year-to-year variability of windbreak effects on crop yields. Assuming a 70% reduction in wind speed as representing the maximum potential windbreak effect, the average yield improvement for the Queensland site was 13% for wheat and 3% for mungbean. For wheat at the WA site the average yield improvement from reduced wind speed was 5%. In any year, however, effects varied from negative, neutral to positive, highlighting the highly variable nature of the expression of windbreak effects. This study has shown how physical and biological modelling approaches can be combined to aid our understanding of systems processes. Both the environmental physics perspective and the biological perspective have shortcomings when issues that sit at the interface of both approaches need to be addressed. While the physical approach has clear advantages when investigating changes in physical parameters such as wind speed, vapour pressure deficit (VPD), temperature or the energy balance of the soil–plant–atmosphere continuum, it cannot deal with complex, biological systems adequately. Conversely, the crop physiological approach can handle such biological interactions in a scientific and robust way while certain atmospheric processes are not considered. The challenge was not to try and capture all these effects in 1 model, but rather to structure a modelling approach in a way that allowed for inclusion of such processes where necessary.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3