Genetic analysis of maize grain yield components and physiological determinants under contrasting nitrogen availability

Author:

Hisse Ignacio R.ORCID,D’Andrea Karina E.,Otegui María E.

Abstract

Context Most maize breeding is conducted under high-input conditions, with nitrogen supply being crucial due to its impact on yield. Aims This study aimed to investigate broad-sense heritability, and general and specific combining ability variances of physiological traits defining grain yield under contrasting soil nitrogen supply. Methods A six-parent full diallel cross was analysed under high (fertilised with 200 kg N/ha) and low (unfertilised control) nitrogen supply in two seasons. We measured kernel number per plant and kernel weight, the associated traits of plant growth during the critical and grain-filling periods, and source–sink relationships in both periods. Key results Heritabilities of traits ranged from 0.54 to 0.88, and general surpassed specific combining ability for most traits. At low nitrogen (1) the relative importance of general combining ability estimated by Baker’s ratio increased across traits (low nitrogen: 0.90 vs high: 0.85) because the decrease in combining ability variance was larger for specific than general (–78% vs −39%), and (2) source–sink relationship during grain filling had the highest Baker’s ratio (0.96) and heritability (0.78). Plant growth rates during the critical period and kernel number increased substantially at high nitrogen (40 and 34%, respectively), and they had the highest heritability (0.79 and 0.88) and Baker’s ratio (>0.90). Conclusions Low nitrogen environments increased the relative importance of general combining ability effects, and high yield can be obtained by improving the source–sink relationship during grain filling, whereas high nitrogen increased yield by improving plant growth rate during the critical period and kernel number. Implications Knowledge of source–sink relationship during effective filling period, plant growth during the critical period and kernel number may result in a more targeted selection program.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3