Keratin gene expression in Merino sheep with divergent wool growth

Author:

Bray M.,Revell D. K.,Bawden C. S.,Hynd P. I.

Abstract

South Australian Merino sheep were selected on the basis of high or low estimated breeding values (EBV) for wool growth rate (W), but with similar bodyweight, follicle density, and mean fibre diameter. Differences in the level of expression of keratin genes were examined in the skin of these sheep to test the hypothesis that divergence in EBV for wool growth is related to the production of wool proteins differing in sulfur (S) content. Further, it was proposed that this differential gene expression would be most pronounced when the supply of S amino acids to the animal was increased. Sheep selected for high EBV (+W) produced more wool per day than low EBV sheep (–W) (on average 32.5 v. 17.7 g/day clean wool, respectively; P < 0.05) but the S content of the wool did not differ between selection groups (2.77% v. 2.87% S, respectively; P = 0.2). Expression of keratin genes including keratin-associated protein KAP 2 (a high S gene), KAP 4 (an ultra-high S gene), KAP 6 (a high glycine/tyrosine gene), and the intermediate filament gene K 2.10, did not differ significantly between +W and –W groups. KAP 2 and K 2.10 each accounted for approximately 5% of the variation in wool growth rate (WGR) but expression of none of the genes examined was significantly related to the S content of the fibre produced. This suggests that differential keratin gene expression was not the source of genetic divergence in WGR. Instead the latter likely reflects a combination of differential cellular rate and growth processes (e.g. rate of bulb cell production, hypertrophy of cortical cells), differences in the relative production of inner root sheath and fibre from the follicle bulb cell population, or differential nutrient uptake into the follicle.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3