Number and weight of cotton lint fibres: variation due to high temperatures in the field

Author:

Rahman Hafeez-ur

Abstract

Seed surface area is the basic ground for lint production in cotton and, hence, a starting point for genetic improvement in lint yield. Experiments on upland cottons were carried out under 2 temperature regimes (April sown, high temperature regime; June sown, moderate regime) for 2 years in the field to study their modifying effect on phenotypic expression and combining ability of lint weight per seed (LW/S), lint weight per unit seed surface area (LW/SA), lint weight per unit fibre length (LW/FL), lint frequency (LF), number of spinnable fibres per seed (F/S), and number of spinnable fibres per unit seed surface area (F/SA). Variation among cultivars for relative decrease in the basic lint traits under high temperature regime indicated their differences in heat sensitivity. Genetic variation for all basic lint traits was low over environments but high within environments. Temperature regime was a stronger source of variation in basic lint traits than year. Temperature regimes modified phenotype, ranking among parents, and combining ability of basic lint traits. Relative contribution of specific combining ability to total variation decreased under high temperature regime for all the basic lint traits, except LW/FL, with a corresponding increase in general combining ability due to either female or male parents. Relative contribution of general combining ability due to female parents for LW/S and LW/SA, and that due to male parents for LW/SA, LF, F/S, and F/SA, increased substantially under high temperature regime. High temperature regime was favourable for the expression of additive genetic variability. From the breeding point of view, F/S and F/SA were more useful traits.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3