Corrigendum to: Plant isotopic composition provides insight into mechanisms underlying growth stimulation by AM fungi in a semiarid environment

Author:

Querejeta José I.,Allen Michael F.,Alguacil María M.,Roldán Antonio

Abstract

We hypothesised that improved plant water status and enhanced transpiration are key mechanisms involved in plant growth stimulation by native arbuscular mycorrhizal fungi (AMF) in semiarid calcareous soils. Seedlings of the dryland shrubs Pistacia lentiscus L. and Retama sphaerocarpa L. were pre-inoculated with a mixture of eight native Glomus spp. fungi, or left un-inoculated, before transplanting into a degraded site in south-eastern Spain. Pre-inoculated Pistacia and Retama shrubs grew faster after transplanting, despite spontaneous colonisation of control plants by local AMF. Pre-inoculation enhanced shoot water content and shoot �15N in both shrub species. Increased potassium uptake and improved water relations were key mechanisms behind growth stimulation by native AMF in Pistacia. Shoot �18O (a proxy measure of stomatal conductance) was significantly less negative in AMF-inoculated than in control Pistacia seedlings, indicating enhanced cumulative transpiration in the former. In contrast, shoot �18O was unaffected by AMF inoculation in Retama, a leafless leguminous shrub with photosynthetic stems. Growth stimulation by native AMF in Retama was attributed to increased phosphorus uptake, enhanced atmospheric nitrogen fixation and a largely nutrient-mediated improvement of plant water status. Shoot �13C was not significantly influenced by AMF inoculation in either shrub species, thus suggesting roughly parallel upshifts in photosynthetic and transpiration rates which did not affect plant water use efficiency.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3