Australian advances in vegetation classification and the need for a national, science-based approach

Author:

Luxton SarahORCID,Lewis DonnaORCID,Chalwell Shane,Addicott EdaORCID,Hunter JohnORCID

Abstract

This editorial introduces the Australian Journal of Botany special issue ‘Vegetation science for decision-making’. Vegetation science and classification are crucial to understanding Australian landscapes. From the mulga shrublands of the arid interior to the monsoon rain forests of northern Australia, we have culturally and scientifically built upon the delineation of vegetation into recognisable and repeatable patterns. As remote sensing and database capacities increase, this improved capability to measure vegetation and share data also prompts collaboration and synthesis of complex, specialised datasets. Although the task faces significant challenges, the growing body of literature demonstrates a strong discipline. In Australia, purpose-driven products describe vegetation at broad scales (e.g. the National Vegetation Information System, the Terrestrial Ecosystem Research Network). At fine scales however (i.e. that of the vegetation community), no uniform framework or agreed protocols exist. Climate and landform dictate vegetation patterns at broad scales, but microtopography, microclimate and biotic processes act as filters at finer scales. This is the scale where climate-change impacts are most likely to be detected and effected; this is the scale at which a deeper understanding of evolutionary ecology will be achieved, and it is the scale at which species need to be protected. A common language and system for understanding Australian communities and impetus for collecting data at this scale is needed. In the face of ongoing climate and development pressures and an increasingly complex set of tools to manage these threats (e.g. offset policies, cumulative impact assessments), a nationally collaborative approach is needed. It is our hope that this special issue will help to achieve this.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3