Author:
Pathan S. M.,Aylmore L. A. G.,Colmer T. D.
Abstract
Low ionic sorption capacities and high hydraulic conductivities of sandy soils contribute to the potential for leaching of nutrients applied to these soils. Batch sorption experiments were used to examine NO3–, NH4+, and P sorption/desorption isotherms for Karrakatta sand and Kwinana fly ash. Column experiments assessed leaching of these nutrients from this sandy soil, when amended with 4 rates (0, 5, 10, and 20%, wt/wt) of fly ash. The sorption of NO3–, NH4+, and P was higher for fly ash than the sandy soil. Phosphorus sorption was greatest for unweathered fly ash, followed by weathered fly ash and then the soil; for example, sorption from a solution containing 20 mg/L P was 90%, 28%, and 14%, respectively. Desorption of P was much slower in the unweathered fly ash than weathered fly ash or the soil. Leachates collected from columns containing fly ash amended soil (5, 10, and 20%, wt/wt) generally had lower concentrations of NO3– and NH4+ than leachates from non-amended soil. Prior to adding fertiliser, the concentration of P was greater in leachate from fly ash amended soil than from the native soil, due to fly ash (weathered) itself containing 92.5 mg/kg of extractable P. However, from day 35 onwards, the concentration of P was lower in leachates from soil amended with 10% or 20% fly ash than from non-amended soil. Thus, fly ash amendment retarded NO3–, NH4+, and P leaching in the sandy soil and may therefore be a useful tool for improvement of nutrient management in sandy soils.
Subject
Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献