Lonidamine-ethyl ester-mediated remodelling of the Sertoli cell cytoskeleton induces phosphorylation of plakoglobin and promotes its interaction with α-catenin at the blood–testis barrier

Author:

Mruk Dolores D.,Bonanomi Michele,Silvestrini Bruno

Abstract

Several compounds affect male fertility by disrupting the adhesion of germ cells to Sertoli cells, which results in the release of undeveloped germ cells into the seminiferous tubule lumen that are incapable of fertilising the ovum. Indazole carboxylic acids are one class of compounds exhibiting such effects and they have been investigated as non-hormonal contraceptives for potential human use. The aims of this study were to investigate the effects of lonidamine-ethyl ester, an indazole carboxylic acid, on spermatogenesis and cell junctions, in particular, desmosomes. We found two doses of lonidamine-ethyl ester at 50 mg kg–1 to disrupt Sertoli–germ cell adhesion. By light and fluorescent microscopy, pronounced changes were observed in the distribution of actin microfilaments and intermediate filaments, as well as in the localisation of plakoglobin, a protein with structural and signalling roles at the desmosome and adherens junction at the blood–testis barrier. Furthermore, immunoblotting and immunoprecipitation experiments using testis lysates revealed a significant upregulation (P < 0.01) of plakoglobin and Tyr-phosphorylated plakoglobin. Co-immunoprecipitation experiments showed an increase in the interaction between plakoglobin and fyn proto-oncogene, an Src family non-receptor tyrosine kinase, after treatment, as well as an increase in the interaction between plakoglobin and α-catenin. Taken collectively, these data indicate that a disruption of Sertoli cell and spermatocyte–spermatid adhesion in the seminiferous epithelium by lonidamine-ethyl ester results in the phosphorylation of plakoglobin, thereby promoting its interaction with α-catenin at the blood–testis barrier.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3