Author:
White JW,Castillo JA,Ehleringer J
Abstract
Recent theoretical and empirical studies have indicated that isotopic discrimination against 13C (Δ) during photosynthesis in C3 plants reflects variation in intercellular CO2 concentration (ci). Under water deficit, cultivar differences in Δ may indicate differences in leaf gas exchange characteristics. Cultivar differences in Δ may also result indirectly from genetic variation in root characteristics affecting the level of water stress experienced by the canopy. Differences in root growth affecting the degree of dehydration postponement could prolong gas exchange activity and the maintenance of relatively high ci and Δ.
To evaluate relations between root growth, productivity and Δ in common bean (Phaseolus vulgaris L.), Δ and crop growth parameters, including biomass production, grain yield and root length density, were determined for ten bean genotypes grown under rainfed conditions at two sites in Colombia which differed primarily in soil fertility and effective rooting depth. The 10 genotypes were also grown under irrigation at the more fertile site. Under rainfed conditions, root length density was positively correlated with Δ in the fertile Mollisol at Palmira, and was also positively correlated with Δ in the infertile Oxisol at Quilichao if one possibly abberent genotype was excluded. At Palmira, reduced crop growth and seed yield were associated with low Δ values. At Quilichao, intermediate Δ values were associated with the greatest growth and yield. Under irrigation at Palmira there was no association between growth or yield and Δ.
Subject
Plant Science,Agronomy and Crop Science
Cited by
113 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献