Astaxanthin improves the developmental competence of in vitro-grown oocytes and modifies the steroidogenesis of granulosa cells derived from bovine early antral follicles

Author:

Abdel-Ghani M. A.,Yanagawa Y.,Balboula A. Z.,Sakaguchi K.,Kanno C.,Katagiri S.,Takahashi M.,Nagano M.ORCID

Abstract

In this study we investigated the effect of astaxanthin (Ax), which exhibits strong antioxidant activity, during invitro growth (IVG) on the developmental competence of oocytes and steroidogenesis of granulosa cells derived from early antral follicles. Bovine oocyte–cumulus–granulosa complexes collected from early antral follicles were cultured for 12 days in the presence or absence (control) of 500µM Ax. The viability of oocytes and antrum formation in the granulosa cell layer during IVG culture were greater in the presence than absence of Ax (P<0.05). Regardless of Ax treatment, 17β-oestradiol production increased during IVG culture; however, progesterone production was significantly lower in the presence than absence of Ax (P<0.05). Reactive oxygen species levels were lower in Ax-treated oocytes than in controls after IVG (P<0.05). Although nuclear maturation and cleavage rates did not differ between the Ax-treated and control groups, Ax treatment led to weaker cathepsin B activity in oocytes and better blastocyst rates than in controls (P<0.05). Accordingly, Ax treatment during IVG increased the total number of cells in blastocysts (P<0.05). These results indicate that Ax supplementation of IVG medium improves the quality of bovine oocytes due to its antioxidative effects on growing oocytes and its suppression of the luteinisation of granulosa cells.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3