Measuring Mass-Loss Evolution at the Tip of the Asymptotic Giant Branch

Author:

Sandin C.,Roth M. M.,Schönberner D.

Abstract

AbstractIn the final stages of stellar evolution low- to intermediate-mass stars lose their envelope in increasingly massive stellar winds. Such winds affect the interstellar medium and the galactic chemical evolution as well as the circumstellar envelope where planetary nebulae form subsequently. Characteristics of this mass loss depend on both stellar properties and properties of gas and dust in the wind formation region. In this paper we present an approach towards studies of mass loss using both observations and models, focussing on the stage where the stellar envelope is nearly empty of mass. In a recent study we measure the mass-loss evolution, and other properties, of four planetary nebulae in the Galactic disk. Specifically we use the method of integral field spectroscopy on faint halos, which are found outside the much brighter central parts of a planetary nebula. We begin with a brief comparison between our and other observational methods to determine mass-loss rates in order to illustrate how they differ and complement each other. An advantage of our method is that it measures the gas component directly requiring no assumptions of properties of dust in the wind. Thereafter we present our observational approach in more detail in terms of its validity and its assumptions. In the second part of this paper we discuss capabilities and assumptions of current models of stellar winds. We propose and discuss improvements to such models that will allow meaningful comparisons with our observations. Currently the physically most complete models include too little mass in the model domain to permit a formation of winds with as high mass-loss rates as our observations show.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emission-line stars in M31 from the SPLASH and PHAT surveys;Monthly Notices of the Royal Astronomical Society;2016-11-17

2. A catalogue of integrated Hα fluxes for 1258 Galactic planetary nebulae;Monthly Notices of the Royal Astronomical Society;2013-03

3. Newly discovered halos and outer features around southern planetary nebulae;Proceedings of the International Astronomical Union;2011-07

4. The evolution of planetary nebulae;Astronomy & Astrophysics;2010-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3