The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system

Author:

Kirchgessner Norbert,Liebisch Frank,Yu Kang,Pfeifer Johannes,Friedli Michael,Hund Andreas,Walter Achim

Abstract

Crop phenotyping is a major bottleneck in current plant research. Field-based high-throughput phenotyping platforms are an important prerequisite to advance crop breeding. We developed a cable-suspended field phenotyping platform covering an area of ~1 ha. The system operates from 2 to 5 m above the canopy, enabling a high image resolution. It can carry payloads of up to 12 kg and can be operated under adverse weather conditions. This ensures regular measurements throughout the growing period even during cold, windy and moist conditions. Multiple sensors capture the reflectance spectrum, temperature, height or architecture of the canopy. Monitoring from early development to maturity at high temporal resolution allows the determination of dynamic traits and their correlation to environmental conditions throughout the entire season. We demonstrate the capabilities of the system with respect to monitoring canopy cover, canopy height and traits related to thermal and multi-spectral imaging by selected examples from winter wheat, maize and soybean. The system is discussed in the context of other, recently established field phenotyping approaches; such as ground-operating or aerial vehicles, which impose traffic on the field or require a higher distance to the canopy.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3